
Makalah IF1220 Strategi Algoritma – Semester II Tahun 2024/2025

Application of Boyer-Moore and Regex for Advanced

Log Pattern Analysis in SIEM for Threat Detection

Azfa Radhiyya Hakim - 135231151

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
1aradhihakim@gmail.com, 13523115@std.stei.itb.ac.id

Abstract— In the modern cybersecurity landscape, SIEM is

crucial for threat detection through log analysis. However, the

volume and diversity of log data demand efficient strategies. This

paper explores applying the Boyer-Moore Algorithm and Regular

Expressions (Regex) for advanced log pattern analysis in Security

Information and Event Management (SIEM). Boyer-Moore is

effective for precise string searches while Regex offers flexibility

for complex patterns. The combination of these algorithmic

strategies enhances incident detection precision and speed,

strengthening defenses against cyber threats.

Keywords—Boyer-Moore, Regex, SIEM, Log Analysis, Pattern

Matching

I. INTRODUCTION

Algorithm Strategy is a general approach or a framework that

used to design an efficient and effective algorithm that solved a

computation problem. It is not really the algorithm, but more

like the “blueprint” or “recipe” to use to solve a various specific

problem.

One of the most learned algorithms, especially relevant in

areas like cybersecurity and data analysis, is pattern matching.

Pattern matching algorithms refers to a process on finding

occurrences of a specific pattern within a larger data (usually

called text). The efficiency and accuracy of pattern matching

algorithms are paramount, especially when dealing with vast

amounts of information.

In a world that has been filled with technology, there will be

many advantages that can make life easier for humans. But on

the other hand, there will also be losses caused by irresponsible

people. When it comes to technology, it is impossible not to

mention one of the most popular implementations, that is

software. Software is a set of instructions, data or programs that

tell a computer what to do and how to do it. As software

becomes deeply integrated into daily life, powering everything

from personal devices to critical infrastructure, it unfortunately

attracts bunch of individuals intent on exploiting vulnerabilities.

These malicious actors often aim to steal data, disrupt services,

or gain unauthorized access, leading to significant financial and

reputational damage.

A critical aspect of detecting and mitigating these threats lies

in monitoring the vast streams of operational data generated by

software and systems. This data, often in the form of log files,

provides a detailed record of events, activities, and interactions

within a technological environment. This is where Security

Information and Event Management become the most critical

thing on developing and maintaining the software. The

effectiveness of a SIEM system heavily relies on its ability to

accurately and efficiently identify malicious patterns hidden

within this massive dataset. Advanced pattern matching such as

Boyer-Moore and Regex can be used to identify those malicious

patterns within a short complexity time.

II. THEORETICAL BASIS

A. Pattern Matching

Pattern matching is the process of finding one or more

matching substrings of a specific pattern within a text to be

identified. The goal is to locate the index position of the first

occurrence of the desired pattern. In the context of pattern

matching, the text string (T) is a sequence of symbols or

characters from a specific alphabet, which is generally very

large. The pattern (P) is a shorter sequence of characters sought

within string T (usually P is much smaller than T). The pattern

matching problem, given a text T of length n and a pattern P of

length m, aims to find all positions (or the first position) in T

where P appears as a substring.

There are some pattern-matching algorithms that are widely

used, such as:

1. Brute Force Algorithm

This is one of the most classical algorithms, where the

user simply iterates through possibilities one by one until

a solution is found (or not). However, this algorithm is

inefficient due to its high time complexity, which is

𝑂(𝑛𝑚)[1].

2. Knuth-Morris-Pratt (KMP) Algorithm

The KMP algorithm improves pattern matching

efficiency by utilizing information from previous

comparisons to avoid unnecessary comparisons. KMP

uses a border function (also known as a failure function

or partial match table) to speed up the search and has a

time complexity of 𝑂(𝑛 + 𝑚)[1].

3. Boyer-Moore Algorithm

The Boyer-Moore algorithm is one of the most efficient

patterns matching algorithms for searching within long

texts. This algorithm uses two main rules: the "bad

character rule" (implicitly described in Case 1, 2, and 3

of the character-jump technique) and the "good suffix

rule" (implied by the "looking-glass technique" and

detailed shift rules) to skip multiple characters at once in

the text, thereby reducing the number of necessary

comparisons. The worst-case time complexity of this

algorithm is 𝑂(𝑛𝑚 + 𝐴), where 𝐴 is the alphabet size ,

mailto:1aradhihakim@gmail.com
mailto:13523115@std.stei.itb.ac.id

Makalah IF1220 Strategi Algoritma – Semester II Tahun 2024/2025

but in practice, it is often much faster.

B. Boyer-Moore

a. Definition

Boyer-Moore is a pattern matching algorithm that is

faster and more efficient than the brute force and KMP

algorithms, which only requires 𝑂(𝑛𝑚 + 𝐴) of time

complexity. This algorithm was invented by two main

figures, namely Robert S. Boyer and J Srother Moore.

b. Basic Concept

Unlike other algorithms, Boyer-Moore performs pattern

matching backwards, i.e. from the last character to the

first. Instead of comparing the pattern with each position

in the text sequentially, it uses two main rules to ignore

multiple characters at once, thus reducing the number of

comparisons required. In the matching process, 3 cases

will arise when the characters being compared are

different, as follows [1].

1. If P contains x somewhere, then try to shift P right

to align the last occurrence of x in P with 𝑇[𝑖].

Figure 1: First case Boyer-Moore

Source: [1]

2. If P contains x somewhere, but a shift right to the last

character occurrence is not possible, then shift P

right by 1 character to 𝑇[𝑖 + 1].

Figure 2: Second case Boyer-Moore

Source: [1]

3. If case 1 and 2 do not apply, then shift P to align

𝑃[0].

Figure 3: Third case Boyer-Moore

Source: [1]

To continue this algorithm, a table called the Last

Occurrence Function (often referred to as LSP) is also

required. This table preprocesses the pattern by finding

the last occurrence of each character within the pattern.

Here is an example of a Last Occurrence Function table

of pattern “abacab”.

Figure 4: LSP Table

Source: writer’s archive

c. Implementation

Below is the pseudocode logic of Boyer-Moore

algorithm.

FUNCTION boyer_moore_algorithm(text, pattern):

 found_positions <- empty list

 text_length <- length of text

 pattern_length <- length of pattern

 bad_char_table <- preprocess_bad_char(pattern)

 IF pattern_length > text_length THEN

 RETURN found_positions

 END IF

 text_position <- 0

 WHILE text_position ≤ (text_length -

pattern_length) DO

 pattern_position <- pattern_length - 1

 WHILE pattern_position ≥ 0 AND

 pattern[pattern_position] =

text[text_position + pattern_position] DO

 pattern_position <- pattern_position -

1

 END WHILE

 IF pattern_position < 0 THEN

 ADD text_position to found_positions

 text_position <- text_position + 1

 ELSE

 bad_char_shift_amt <-

bad_char_shift(bad_char_table,

text[text_position + pattern_position],

pattern_position)

 good_suffix_shift_amt <-

good_suffix_shift(pattern, pattern_position)

 text_position <- text_position +

MAX(bad_char_shift_amt, good_suffix_shift_amt)

 END IF

 END WHILE

 RETURN found_positions

END FUNCTION

Here is the example of Boyer-Moore, with pattern

“abacab” and text “abacaabadcabacabaabb”.

Makalah IF1220 Strategi Algoritma – Semester II Tahun 2024/2025

Figure 5: LSP Table

Source: writer’s archive

C. Regular Expression (Regex)

Regular Expression (Regex) is a powerful, compact, and

flexible notation or standard format used to describe patterns,

which are sequences of characters or strings. Regex is employed

for efficient string matching. It has become a widespread

standard adopted across numerous tools and programming

languages. Regex provides various notations for identifying

patterns, which are shown below [3].

Table 1: LSP Table

Source: [2]

Regex

Pattern
Description

. Any character except newline.

\. A period (and so on for *, \, (, \\, etc.)

^ The start of the string.

$ The end of the string.

\d, \w, \s
A digit, word character [A-Za-z0-9_], or

whitespace.

\D, \W,

\S

Anything except a digit, word character, or

whitespace.

[abc] Character a, b, or c.

[a-z] Characters from a through z.

[^abc] Any character except a, b, or c.

aa | bb Either aa or bb

? Zero or one of the preceding element.

* Zero or more of the preceding element.

+ One or more of the preceding element.

{n} Exactly n of the preceding element.

{n,} n or more of the preceding element.

{m,n} Between m and n of the preceding element.

??, *?,

+?,

{n,}?,

etc.

Same as above, but as few as possible (lazy

match).

(expr) Capture expr for use with \1, etc.

(?:expr) Non-capturing group.

(?=expr) Followed by expr.

(?!expr) Not followed by expr.

D. Security Information and Event Management (SIEM)

Security Information and Event Management (SIEM) is a

software system that is widely used as a powerful tool to

prevent, detect, and react to cyberattacks. SIEM solutions have

evolved into comprehensive systems that provide broad

visibility to identify high-risk areas and proactively focus on

mitigation strategies aimed at reducing costs and incident

response times. Today, SIEM systems and related solutions are

slowly merging with big data analytics tools.

Basically, all SIEMs have the capacity to collect, store, and

correlate events generated by the managed infrastructure. They

are the central platform of the modern security operations center

as they collect events from various sensors (intrusion detection

systems, anti-virus, firewalls, etc.), correlate these events, and

provide a synthetic view of alerts for threat handling and

security reporting [4].

SIEMs consist of several components, which is shown in the

figure below.

Figure 6: SIEM components

Source: [4]

a. Source device: device that generated the log.

b. Log collection: the process of collecting logs from

various source device

c. Parsing normalization: normalize diverse log data to a

consistent standard format

d. Rule engine: analyzes correlates event to identify threats

pattern

e. Log storage: for forensic purposes

f. Monitoring: A real time monitoring of security events

E. Cyber Security Threat Patterns

In the cybersecurity landscape, threats often appear in the

form of specific identifiable patterns. These patterns, known as

cybersecurity threat patterns, are sequences of activities or

signatures that indicate an attempted attack or system

compromise. Understanding these patterns is critical to

designing effective detection strategies, especially in systems

like SIEM that rely on log analysis to identify suspicious

behavior. There are several common attack problems that was

used by the attacker to break the systems. This type of attack

was commonly written at the system log or application.

1. SQL Injection

This is the type of attack where the attacker input some

of dangerous query into the application. This query later

can be executed by the database, and allowed the attacker

to read, edit, delete, or even execute administrative

Makalah IF1220 Strategi Algoritma – Semester II Tahun 2024/2025

command on database. For example, if the attacker input

‘; DROP TABLE--. This is a valid SQL query since it

uses ‘, and will delete table in the database. Another

example is using ‘ or 1=1 --. This query is

commonly used for authentication, where the equation is

always true because 1=1.

2. Cross-Site Scripting (XSS).

This is the type of vulnerability in a website that allow

the attackers to inject a dangerous client script (usually

javascript) into the site that was shown to another user.

When the victim user accesses the site, this dangerous

script will be executed that will gain their cookie session,

manipulate web content, phising, or even direct the user

into a dangerous site. For example, <img src=x

onerror=alert('XSS')>. This pattern will try to

generate with the unknown path. When the

browser failed to load the image (onerror), it will run the

script that was injected.

3. Denial-of-Service (DoS)

This is the type of attack that used to make the resource

or service down and can’t be used by the verified user by

making the service crash.

4. Brute Force Attack

Brute force attacks are attempts to gain access to user

accounts, systems, or other resources by systematically

trying every possible combination of passwords or

usernames until the correct one is found. These attacks

are typically "noisy," leaving behind numerous failed

authentication log entries.

The patterns sought in logs include a high number of

failed login attempts from the same IP address to the

same account, or failed login attempts from multiple IP

addresses to a single account within a short period.

III. IMPLEMENTATION

The basic implementation flow of the application is as

follows. First, the user (the system in an automated SIEM)

provides the raw log data. This data is then structured into log

object that contains information or metadata. Program continues

by checking for threat using Boyer-Moore and regex algorithm.

For simplicity, we create 3 main classes that becomes the main

core of the program: LogPattern, LogEntry, and

ThreadDetection.

Figure 7: Core class

Source: writer’s archive

To identify cyber threats, this advanced log pattern analysis

system leverages several instances of ThreatPattern specifically

designed to adapt to common vulnerabilities and attack

techniques employed by adversaries. Each ThreatPattern

instance within the system serves as a formal definition of a

potential threat signature. By using pattern matching, some of

the threat pattern that can be used is shown as follows.

1. ThreatPattern 1

• name = “SQL_Injection”

• boyer_moore_signature = “union_select”

• regex_pattern =

r"(?i)(union\s+select|insert\s+into|delete\s+from|dro

p\s+table|exec\s*\(|';\s*--)"

• severity = “HIGH”

• description = "SQL Injection attempt detected"

2. ThreatPattern 2

• name = “XSS_Attack”

• boyer_moore_signature = “<script”

• regex_pattern =

r"(?i)(<script[^>]*>|javascript\s*:|on\w+\s*=|<ifra

me[^>]*>|eval\s*\()"

• severity = “HIGH”

• description = " Cross-Site Scripting attempt

detected"

3. ThreatPattern 3

• name = “Directory_Traversal”

• boyer_moore_signature = “../”

• regex_pattern =

r"(?i)(\.\.[\\/]|%2e%2e[\\/]|%252e%252e[\\/]|\.\.[\\\/].

*etc[\\\/]passwd)"

• severity = “MEDIUM”

• description = “Directory traversal attempt detected”

Makalah IF1220 Strategi Algoritma – Semester II Tahun 2024/2025

4. ThreatPattern 4

• name = “Brute_Force”

• boyer_moore_signature = “failed login”

• regex_pattern =

r"(?i)(failed\s+login|authentication\s+failed|invalid\

s+password|login\s+attempt)"

• severity = “MEDIUM”

• description = “Potential brute force attack detected”

5. ThreatPattern 5

• name = “Command_Injection”

• boyer_moore_signature = “system(”

• regex_pattern =

r"(?i)(system\s*\(|exec\s*\(|cmd\s*\(|passthru\s*\(|s

hell_exec)"

• severity = “HIGH”

• description = “Command injection attempt

detected”

6. ThreatPattern 6

• name = “Header_Injection”

• boyer_moore_signature = “\r\n”

• regex_pattern =

r"(?i)(%0a|%0d|%0d%0a|\r\n|\n|\r).*?(Set-

Cookie|Location|Content-Type)"

• severity = “MEDIUM”

• description = “HTTP Header Injection detected”

7. ThreatPattern 7

• name = “Privilege_Gained”

• boyer_moore_signature = “sudo”

• regex_pattern =

• r"(?i)(sudo\s+-u|su\s+-|whoami|id\s*;|uname\s*-

a|cat\s+\/etc\/passwd)"

• severity = “HIGH”

• description = “Privilege escalation attempt detected”

The process continues by analyzing each log entry for threat

detection. For every log entry, the system first applies the Boyer-

Moore algorithm to quickly scan for predefined threat

signatures. If a signature match is found, the system then

performs detailed regex pattern matching on the corresponding

ThreatPattern to validate and extract the threat. The

implementation of this step is shown in the figure below.

Figure 8: process_log_entry method

Source: writer’s archive

IV. TEST CASE

To test the validity of the threat detection system,

comprehensive test cases have been designed to evaluate both

the accuracy and performance of the two-stage detection

mechanism. The test cases are categorized into several types to

ensure thorough validation of the system's capabilities. Some of

the log that will be tested is shown as follows.

1. timestamp="2024-06-09 14:30:15",

source_ip="192.168.1.100",

log_content="GET /admin.php?id=1' UNION SELECT

username,password FROM users-- HTTP/1.1",

log_type="web_access"

2. timestamp="2024-06-09 14:31:22",

source_ip="10.0.0.50",

log_content="POST /login.php - Failed login attempt

for user 'admin'",

log_type="authentication"

3. timestamp="2024-06-09 14:32:08",

source_ip="172.16.0.25",

log_content="GET /uploads/shell.php?cmd=system('cat

/etc/passwd') HTTP/1.1",

log_type="web_access"

4. timestamp="2024-06-09 14:33:45",

source_ip="192.168.1.200",

log_content="<script>alert('XSS Test')</script> in user

input field",

log_type="application"

Upon execution of the program, the results are presented as

depicted in the figure below.

Makalah IF1220 Strategi Algoritma – Semester II Tahun 2024/2025

Figure 9: Threat detection report

Source: writer’s archive

The analysis of the Threat Detection Report and Performance

Metrics indicates that the Cybersecurity SIEM simulation

successfully processed a batch of log entries, identifying a total

of four distinct threats. The detection results highlight a

proactive capability in identifying various attack patterns,

categorized by their severity. Overall, the system reported four

threats detected, with the majority falling into the high-severity

category. Specifically, three threats were classified as High

severity, while one threat was classified as Medium severity.

This underscores the system's ability to prioritize potentially

critical incidents for immediate attention.

V. CONCLUSION

Based on the implementation before, the use of pattern

matching (Boyer-Moore and Regex) in the process of detecting

threats in SIEM proved capable of improving the monitoring of

software on a fairly large scale. Log processing techniques are

the main key in this algorithm, where we can detect the types of

threats that are detected. These results indicate that the modular

pattern matching approach has great potential to be applied in

modern security systems. In this paper, the author has not fully

included all types of threats that attackers might use. Further

research can focus more on increasing the number of such threat

types.

VI. ACKNOWLEDGMENT

I express my gratitude to Allah SWT, by whose grace I was

given the ease to complete this paper well and on time.

Furthermore, I extend my thanks to Dr. Ir. Rinaldi, M.T., who,

as the lecturer for the IF 2211 Algorithm Strategy course, taught

this 4th-semester material exceptionally well and enjoyably. I

also express my sincere thanks to my parents who have greatly

assisted and supported me throughout the process of completing

this paper. Lastly, I would like to thank my friends, whom I

cannot mention one by one, for their invaluable help and support

in the creation of this paper.

REFERENCES

[1] Munir, Rinaldi, 2025. “Pencocokan String”.

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/23-

Pencocokan-string-(2025).pdf
[2] Munir, Rinaldi, 2025. “24-String-Matching-dengan-Regex”.

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/24-

String-Matching-dengan-Regex-(2025).pdf
[3] H. Hosoya, J. Vouillon, and B. C. Pierce, "Regular Expression Types for

XML," in Proceedings of the fifth ACM SIGPLAN international

conference on Functional programming, Montreal, Canada, 2000

[4] G. González-Granadillo, S. González-Zarzosa, and R. Diaz, "Security

Information and Event Management (SIEM): Analysis, Trends, and Usage

in Critical Infrastructures," Sensors, vol. 21, no. 14, p. 4759, 2021.

STATEMENT

I hereby declare that this paper is my original work and has not

been copied, adapted, translated from, or plagiarized from any

other source.

Bandung, 24 June 2025

Azfa Radhiyya Hakim, 13523115

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/23-Pencocokan-string-(2025).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/23-Pencocokan-string-(2025).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/24-String-Matching-dengan-Regex-(2025).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/24-String-Matching-dengan-Regex-(2025).pdf

